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The growth, oscillation and collapse of vortex cavitation bubbles are examined using
both two- and three-dimensional numerical models. As the bubble changes volume
within the core of the vortex, the vorticity distribution of the surrounding flow is
modified, which then changes the pressures at the bubble interface. This interaction
can be complex. In the case of cylindrical cavitation bubbles, the bubble radius will
oscillate as the bubble grows or collapses. The period of this oscillation is of the
order of the vortex time scale, τV = 2πrc/uθ,max , where rc is the vortex core radius and
uθ,max is its maximum tangential velocity. However, the period, oscillation amplitude
and final bubble radius are sensitive to variations in the vortex properties and the
rate and magnitude of the pressure reduction or increase. The growth and collapse of
three-dimensional bubbles are reminiscent of the two-dimensional bubble dynamics.
But, the axial and radial growth of the vortex bubbles are often strongly coupled,
especially near the axial extents of the bubble. As an initially spherical nucleus grows
into an elongated bubble, it may take on complex shapes and have volume oscillations
that also scale with τV . Axial flow produced at the ends of the bubble can produce
local pinching and fission of the elongated bubble. Again, small changes in flow
parameters can result in substantial changes to the detailed volume history of the
bubbles.

1. Introduction
The static pressure in the core of a linear vortex is depressed when compared with

the pressure far from the vortex axis. In some cases, when the vortex circulation
is large enough, the pressure in the vortex core can fall below the liquid vapour
pressure, and it is possible for negative pressures, or tensions, to exist in the core.
Vortex cavitation occurs when a small bubble or nucleus explosively grows when
exposed to these liquid tensions in the vortex core. Sometimes vortex cavitation
bubbles remain small compared with the vortex core radius, with nearly spherical
rapidly growing and collapsing bubbles entirely within the confines of the vortex core.
However, if the bubble is exposed to a prolonged or severe application of tension, the
initially near-spherical bubble can expand and elongate to fill the core of the vortex
and continue to grow along the vortex axis, becoming highly elongated. The growth,
splitting and collapse of vortex cavitation bubbles can produce easily detectable sound
pulses (Choi & Chahine 2004, 2007; Hsiao & Chahine 2005; Choi & Ceccio 2007).

† Email address for correspondence: choijh@umich.edu
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Concentrated regions of vorticity often occur in the tip regions of lifting surfaces
and in flows within and in the wake of turbomachines. Vortex cavitation is also a
common feature of turbulent jets, wakes and shear layers. A comprehensive review is
provided by Arndt (2002).

A recent series of experiments conducted by researchers at the University of
Michigan and the US Navy’s Naval Surface Warfare Center – Carderock Division
illustrated some of the difficulties involved with the prediction and scaling of vortex
cavitation inception and noise for flows induced by turbomachinery. The results of
these studies are reported in Chesnakas & Jessup (2003), Oweis & Ceccio (2005) and
Oweis et al. (2006a, b). In these studies, the location and inception pressure of the
cavitation was associated with the presence of multiple interacting vortices. A variety
of vortex–vortex interactions occurring with both co- and counter-rotating vortices of
varying strength that can lead to the stretching of smaller vortex filaments, and these
smaller vortices can produce cavitation at relatively high pressures due to both stretch-
ing of the vortices and the creation and modification of axial flow in the vortex cores.
This phenomenon has been observed in the inception of jets and shear layers (Katz &
O’Hern 1986; O’Hern 1990; Iyer & Ceccio 2002) and confirmed in advanced numerical
simulations (Hsiao & Chahine 2004, 2008). Such flow complexities can make the
scaling of vortex inception and noise in practical flows of turbomachinery problematic.

Typically, engineers would like to observe vortex cavitation with model scale
experiments and then use these results to make predictions of behaviour at full-
scale conditions. The above description of the vortex cavitation process suggests two
potentially significant scale effects. First, the nuclei population on the model and
full scale can differ substantially, leading to ‘water quality’ scale effects, and even if
the two populations were the same, the different ratios between bubbles and core
sizes will also result in scale effects. Second, the non-cavitating flow fields of the
model and full-scale flows can differ, leading to ‘Reynolds Number’ scale effects. A
simple example is the case of a single bubble in an isolated steady line vortex formed
downstream of a hydrofoil. We can match the free stream pressure (or cavitation
number) and the vortex circulation (or the lift coefficients of the two hydrofoils). But,
the viscous core size of the two vortices will differ since their Reynolds number is
different, and this will lead to a difference in minimum core pressures for the same free
stream pressure. Thus, the inception potential for a given nucleus can vary between
the two flows. The possible presence of multiple interacting vortices makes scaling
even more challenging.

The detailed processes of vortex cavitation bubble inception, growth, splitting and
collapse were originally considered in Chahine (1995) and recently examined in more
details by Choi & Chahine (2004), Oweis, Choi & Ceccio (2004) and Hsiao &
Chahine (2005). Choi & Ceccio (2007) examined individual cavitation vortex bubbles
that were produced as laser-initiated nuclei passed through a region of pressure
reduction and recovery. Figure 1 shows an example of the growth and collapse of
an individual vortex cavitation bubble, along with the volume history and recorded
noise emission. The results of this study revealed the sensitivity of the vortex bubble
dynamics to relatively modest variations in the non-cavitating vortex properties (e.g.
the vortex circulation and core size). The interaction between the growing nucleus
and the surrounding vortical flow leads to changes in the pressure field surrounding
the bubble and the subsequent bubble dynamics, and this leads to a wide variety of
bubble volume histories.

This experimental examination of vortex bubble dynamics showed how changes in
the initial nuclei size and vortical flow field could both influence the growth, collapse
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Figure 1. Typical images of the growth and collapse of an individual vortex cavitation bubble
taking place over ∼ 3 ms and a bubble forms in the throat of a Venturi. The axial length and
average radius of the bubble as a function of position within the Venturi are shown, along
with the corresponding acoustic emission detected with a nearby hydrophone (Choi & Ceccio
2007).

and noise production of the vortex cavitation bubbles. In the present study, we use
numerical simulations to examine the detailed flow interactions between the vortex
cavitation bubble and the surrounding flow field, using a simplified two-dimensional
analysis and an axisymmetric version of the code DF UNCLE c©. In doing so, our goal
is to examine the underlying processes associated with water quality and Reynolds
number scale effects during the growth and collapse of vortex cavitation bubbles. We
will first consider the equilibrium radius of an elongated cavitation bubble. Then,
we will consider the growth of a cylindrical nucleus. These idealized solutions will
provide some insights into the more complex results obtained with the axisymmetric
computations employing DF UNCLE c©.

2. Analysis of cylindrical vortex cavitation bubbles
2.1. Background

Before examining more complex bubble dynamics, we consider the equilibrium
diameter of an elongated bubble that is growing along the axis of a line vortex.
As we shall see below, the elongated bubble diameter is an important length scale
of the flow, along with the core radius of the line vortex. The equilibrium diameter
of a cylindrical bubble in a two-dimensional vortex was predicted analytically for
a Rankine vortex model by Arndt & Keller (1992). They employed conservation of
angular momentum to show that the radius of the cylindrical vapour bubble would
be rb/rC = 1/

√
2 or 71 % of the initial core radius, and the viscous core would be

replaced completely by vapour. However, experimentally observed cavitation bubbles
were often significantly smaller in radius than the predicted value (Arndt 2002; Choi &
Ceccio 2007). A similar analysis was conducted for a Gaussian vortex by Choi &
Ceccio (2007). The original non-cavitating vortex has a profile given by the rotation
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velocity

uθ (r) =
ΓO

2πr

(
1 − e−α(r/rC )2

)
, (2.1)

where ΓO and rC are the circulation and core size of the vortex, and α = 1.255. We
assume that there is no flow in the vortex axial direction. The pressure far from the
vortex axis is P∞, and the pressure at the axis, PC , is given by

PC − P∞

ρ
= −η

(
ΓO

2πrC

)2

, (2.2)

where η = 0.870. The maximum tangential velocity is

uθ (rC) = β
ΓO

2πrC

, (2.3)

where β =0.715. For Rankine vortex, η = β = 1 and α = 0 outside of the viscous core.
The cavitation number at the core of the vortex is defined by

σC =
PC − PV

(1/2)ρ(βΓO/2πrC)2
=

P∞ − PV

(1/2)ρ(βΓO/2πrC)2
− 2η

β2
. (2.4)

A given value of σC can be achieved by both changing the vortex properties (e.g.
increasing the circulation or reducing the core size), or by reducing the free stream
pressure. If σC < 0, the core will be in tension, and nuclei have the potential to
grow. This local cavitation number was also introduced in Choi & Ceccio (2007),
considering local axial velocity.

2.2. Equilibrium model of cylindrical bubble growth

We consider the flow field before and after a small bubble has grown and become
highly elongated along the vortex axis, making the final flow essentially two-
dimensional and the bubble a cylinder. The bubble will have modified the vortical
flow, and the result need not be Gaussian. For this analysis, we will assume that the
final flow field is Gaussian-like and is given by

uθ,b(r) =
ΓO,b

2π(r − γ rb)

(
1 − e−α[(r−γ rb)/(rCb

−γ r
b
)]2

)
, (2.5)

where ΓO,b, rCb and γ are parameters of the cavitating vortex, and rb is the cylindrical
bubble radius. The parameter γ can vary in the range 0<γ < 1. The tangential
velocity at the bubble interface is given by

uθ,b(rb) =
ΓO,b

2πrb(1 − γ )

(
1 − e−α[(rb(1−γ )/(rCb−γ rb)])

2)
. (2.6)

When γ =0, the liquid velocity profile is the same as that of a single-phase vortex,
where the maximum tangential velocity will occur at r = rC , and vapour occupies the
region 0 <r < rb. The tangential velocity at the bubble interface will then be finite
with the value

uθ,b(rb) =
ΓO,b

2πrb

(
1 − e−α[(rb/rCb])

2)
. (2.7)

Conversely, if γ = 1, the tangential velocity at the bubble interface is zero. The
bubble content is vapour pressure and this prescribes a boundary condition on the
bubble surface. The bubble interface is assumed to be without shear stress.
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Figure 2. The calculated equilibrium radius of two-dimensional bubbles in the core of
a two-dimensional Gaussian vortex for varying parameters, γ = 0, 0.2, 0.4, 0.6, 0.8 and 1.0.
The solutions obtained from the dynamics of two-dimensional model are presented for the
conditions of table 1 (O). Three-dimensional conditions are ReΓ = 2 × 105(*) and 4 × 105(+),
with �T / τv = 9.3. Experimental data from Choi & Ceccio (2007) are also shown in filled
symbols.

We need four relationships to close the problem. Conservation of angular
momentum and the kinetic energy in the vicinity of the vortex with and without
the bubble provide two relations. In addition, the Euler equation can be integrated
to relate the pressure at the bubble interface to the pressure far from the vortex as
follows:

P (rb) − P∞

ρ
=

Pv − P∞

ρ
=

∫ rb

∞
−1

r

(
Γo,b

2π(r − γ · rb)

(
1 − e−α((r−γ ·rb)/(rcb−γ ·rb))

2))2

dr

(2.8)
The fourth parameter γ is a free parameter. Note that we assume that the pressure

within the bubble is constant, and that oscillations of the bubble do not produce
pressure gradients within the bubble. This simplification can be easily removed and
a gas compression law can be added to account for the bubble dynamics as done in
other studies using the same code (Hsiao & Chahine 2004, 2008).

The solution of these three relationships with varying values of γ will yield an
envelope of possible vortex bubble radii. Figure 2 presents the resulting bubble radius
as a function of cavitation number for a range of γ . Experimental data from Choi &
Ceccio (2007) are also presented and are consistent with a value of γ ∼ 0.8, suggesting
that the circumferential velocity at the bubble interface is much reduced compared to
the maximum rotation velocity in the liquid. The variation in the equilibrium rb/rC for
different vortex conditions suggests that the tangential velocity that develops at the
bubble interface may be a function of both the core radius and the vortex circulation,
not simply the ratio ΓO/2πrC that scales the non-cavitating core pressure. Also, this
result suggests that the value of the tangential velocity at the bubble surface (related
to γ in the model) may not be uniquely determined by the non-cavitating vortex
properties but is the product of the detailed history of the initial bubble growth.
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2.3. Dynamic model of cylindrical bubble growth and collapse

To explore this further, we consider the dynamics of a cylindrical bubble. The analysis
presented here follows that of Chahine (1995) who examined the interaction of a
bubble and a line vortex. Here, we consider a Gaussian vortex that has a cylindrical
nucleus placed on its axis. The nucleus bubble is initially in pressure equilibrium, and a
reduction in the far-field pressure will result in radial bubble growth. As the radius of
the cylindrical bubble increases, it pushes away the surrounding liquid, redistributing
the vorticity of the flow field. This, in turn changes the pressure near the bubble. This
coupling of the radial bubble motion and the circumferential velocity field drives the
infinitely long bubble dynamics, enabling us to assume two-dimensional behaviour.

(
rbr̈b + ṙ2

b

)
ln

(
rD

rb

)
+

r2
b ṙ

2
b

2

(
1

r2
D

− 1

r2
b

)
=

1

ρ
(PB − P∞) +

∫ rD

rb

u2
θ

r
dr, (2.9)

where rb(t) is the radius of the bubble, PB is the pressure in the liquid at the bubble
surface and rD is a given distance from the bubble axis. Introduction of rD , where the
far-field pressure is imposed, is needed to avoid singularity of the solution. This is a
classical problem of two-dimensional bubble dynamics, which can be avoided more
accurately by accounting for the liquid compressibility (e.g. Kedrinskii 2005). The
use of a not too large rD enables to recover a good approximate solution. The pres-
sure far from the bubble is P∞(t) and may be a function of time. The pressure within
the cylindrical bubble is given by

PB = PV + PG − 2μ
ṙb

rb

− S

rb

, (2.10)

where S is the interfacial tension, and μ is the liquid viscosity. PG is the pressure
resulting from the presence of non-condensable gas in the bubble, which is usually
assumed to have a polytropic relationship with the bubble volume

PG = PGO

(
rO

rb

)2n

, (2.11)

where rO is the initial bubble radius and n= 1 for isothermal expansion or is equal
to the ratio of specific heats for adiabatic expansion. Since the added mass of the
expanding cylinder is infinite in an unbounded fluid, the first term in (2.9) becomes
unbounded as rD → ∞. Nevertheless, it is instructive to examine the bubble dynamics
resulting from these relationships for a finite, but large, value of rD .

Franc & Michel (2004) present a solution for the dynamics of an oscillating
cylindrical vortex bubble for the circumferential velocity distribution

uθ (r) =
ΓO

2πr
r � rb. (2.12)

Here, the maximum tangential velocity occurs at the bubble surface and the length
scale of the vortex core has been eliminated. The flow is assumed to be inviscid and
without interfacial tension, and the bubble content is assumed to be vapour with a
constant, PV . When combined with (2.9), the equilibrium bubble radius rb is found to
be

ΓO

8π2r2
b

[
1 −

(
rb

rD

)2
]

=
P∞ − PV

ρ
. (2.13)



Growth, oscillation and collapse of vortex cavitation bubbles 261

The small-amplitude oscillation of the bubble radius about this equilibrium
condition, for rD � rb, has a period

T =
4π2r2

b

ΓO

√
ln

(
rD

rb

)
. (2.14)

Since the pressure in the bubble is assumed to be constant, the gas within the
bubble does not contribute any stiffness. Instead, the radial motion of the bubble
and the tangential velocity distribution are coupled to form a dynamic compliance.
Increasing rb will push the rotating fluid away from the axis, and angular momentum
conservation will lead to a decrease in the average tangential velocity and an increase
in the fluid pressure at the bubble interface, resisting the bubble’s growth. Similarly,
decreasing rb will lead to a decrease in the local fluid pressure that will resist the
bubble’s further collapse. Hence, an oscillation can take place around an equilibrium
radius.

The oscillation period is related to the time scale 4πr2
b /ΓO , which is the time for a

particle on the surface of the bubble to make one revolution. The period also has a
logarithmic dependence on the radial extent of the domain, since the added mass of
a cylindrical bubble becomes unbounded with increasing domain size. However, this
solution illustrates the basic dynamics of the cavitating flow. The modified Rayleigh–
Plesset equation (2.9) reveals that complex interactions may take place between the
changing bubble radius, the surrounding rotating flow field and the resulting pressure
field near the bubble wall. The exact relationship between uθ (r, t) and rb(t) may not be
simple, as these functions are coupled by the circumferential momentum equation and
depend on the time history of the circumferential velocity distribution. If the bubble
radius grows to the order of the original vortex core size, the velocity distribution may
depart significantly from the modified Gaussian profiles assumed in the equilibrium
analysis.

We will extend this analysis to examine the dynamic growth of a small cylindrical
bubble in the core of a Gaussian vortex. We will consider the growth of the cylindrical
bubble after the application of a pressure reduction in the far field, �P∞ < 0 over a
period of time �T . The independent variables of the problem lead to the following
non-dimensional parameters:

(a) The core cavitation number before the change in external pressure is set such
that the original nucleus is in pressure equilibrium:

σCO =
(P∞O − PBO)

(1/2)ρ (βΓO/2πrC)2
− 2η

β2
= 0, (2.15)

where PBO = PV + PGO − S/rb.
(b) The core cavitation number after the application of the pressure reduction is

σC =
(P∞O + �P∞) − PB

(1/2)ρ(β ΓO/2πrC)2
− 2η

β2
=

�P∞

(1/2)ρ(β ΓO/2πrC)2
, (2.16)

(c) The vortex Reynolds number is

ReΓ =
ρΓO

μ
. (2.17)

(d ) The non-dimensional externally applied tension is

�P∞

P∞O

=
σCβ2

2η

[
1

1 + PBO/ηρ(ΓO/2πrc)2

]
. (2.18)
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Figure 3. The pressure time history used in the simulation of driven bubble growth and
collapse. The nucleus (cylindrical or spherical) starts at pressure equilibrium. Then, the pressure
is reduced by �P∞ over a period of time �T following a cosine function.

(e) The non-dimensional time over which the tension is applied is

�T

τV

= �T
βΓO

4π2r2
c

, (2.19)

where τV = 4π2r2
c /βΓO .

Examining (2.15), the minimum value of σC is −2η/β = −3.40 when the free-stream
pressure is reduced to vapour pressure. Values of 0 >σC > −3.40 can be achieved
through a combination of the free-stream pressure and the vortex properties. Hence,
for a fixed core tension, we may have different radial pressure gradients away from
the vortex axis.

The dynamics of cylindrical vortex cavitation bubbles was examined over a range
of applied pressures and pressure gradients. The amount of tension applied to the
nucleus was set with σC , and the non-dimensional rate at which the pressure was
applied is then (�P∞/�T )(τV /P∞O). A small cylindrical nucleus of radius rO is placed
on the axis, and the initial external pressure P∞O is set such that the liquid pressure
at the surface of the nucleus is in equilibrium with the contents of the bubble and
surface tension, and the presence of non-condensable gas is ignored. A fixed value of
rO =100 μm was used along with the properties of room-temperature water.

The continuity equation and the Navier–Stokes equations in the radial and
circumferential directions were solved for axisymmetric bubble growth. The motion of
the bubble wall was coupled to the flow field, capturing the interaction between uθ (r, t)
and rb(t). The radial and tangential mass conservation and Navier–Stokes equations
were solved with a fourth-order Runge–Kutta scheme for each time step. Space was
discretized using 10 000 radial points between r = 0 and 100rC . The time steps did
not exceed 0.001τV . A time varying pressure, shown in figure 3, was imposed on
the boundary at r = 100rC . A series of computations were performed with increasing
domain size to determine when the solution variations from domain size to the
next started varying very little, even though the analytical solution suggests that
true independence cannot be reached. The data of figure 4 suggest that a 100rD/rC ,
domain size may be sufficiently large to eliminate strong dependence on domain size.
One should note than in this figure between 5rD/rC and 1000rD/rC the variations of
rb/rC are less than by 1%.

A series of computations were performed to examine the dynamic behaviour of
the cylindrical vortex cavitation bubble. The vortex properties, applied tension and
rate of pressure reduction were all varied, and the conditions are shown in table 1.
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Γ0 (m2 s−1) rC (mm) �T/τv

0.5 1 2
0.1 1 9 × σC 9 × σC 9 × σC

2
0.4 4 9 × σC 9 × σC 9 × σC

8
2.0 20 9 × σC 9 × σC 9 × σC

40

Table 1. The matrix of parameters used in the two-dimensional dynamic bubble simulations.
σC =�P ∞/(1/2ρu2

θ,max ) and has the values σC =0.05, −0.10, −0.20, −0.40, −0.50, −0.60,
−0.80, −1.00. �P ∞ is the reduction in pressure applied to the bubble over the time, �T . The
maximum tangential velocity of the vortex before growth of the cavitation bubble is uθ,max

and occurs at the core radius rC . τ v =2πrC/uθ,max is the vortex time scale.
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Figure 4. Convergence of the equilibrium bubble radius computed with the dynamic
two-dimensional model as a function of the domain size rD/rC . Here, σC = −0.4.

In this way, the influence of these parameters on the bubble dynamics and the
elongated bubble radius were revealed. Figure 5 presents typical time histories of
the bubble growth for varying levels of applied tension. Once the cylindrical nucleus
begins to grow, oscillations of the bubble radius begin. After the application of the
tension is complete, the radius oscillates about a mean value, and the oscillations are
approximately sinusoidal. We can compare the mean radius of the bubble after the
tension has been applied with the results of the equilibrium model, as shown in figure 2.
The average equilibrium radius of the cylindrical bubble falls within the envelope
of the data computed with the quasi-static model. The fully coupled cylindrical
bubble/viscous flow data suggest that the growth of the cylindrical bubble leads to
high tangential velocities at the bubble surface, and hence, to a lower value of γ .

The amplitude of the radial oscillations grows with the magnitude of the applied
tension as shown in figure 5(a), and also grows with the rate of application of the
tension as shown in figure 5(b). Also, note that the rate of the applied tension does not
significantly influence much the final average bubble radius. At the Reynolds numbers
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for varying cavitation numbers for three different values of �T /τv = 0.5, 1.0 and 2.0. Γ0 = 0.1,
rC = 1 mm.

considered here, the viscous damping of the flow is relatively small, and the radial
oscillations continue without a noticeable decay in amplitude. The amplitude of these
radial oscillations is strongly related to the magnitude and the rate of the applied
tension, with the ratio of the amplitude to the mean bubble radius becoming larger
as the tension is increased, as shown in figure 6. The amplitude was not observed to
depend on Reynolds number over the range of parameters examined.

The normalized period of the radial oscillations also grows with an increase in
magnitude of the applied tension, as shown in figure 7. The oscillation frequency
decreases with increasing equilibrium bubbles size and the applied tension increases,
but it appears to be unaffected by changes in the Reynolds number or by the rate
at which the tension is applied. The non-dimensional period TβΓO/4π2r2

c is between
0.6 and 1.4 times the vortex time scale. The analytical solution for the period of
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Figure 8. The modified circumferential velocity profile of the vortical flow during the growth
of the two-dimensional bubbles corresponding to Γ0 = 0.1, rC = 1 mm and (a) �T /τv = 0.5 and
t/τv = 1 for varying σC (b) σC = −0.4 and �T /τv = 0.5 for varying times t/τv.uθ,max ,NC is the
maximum tangential velocity for non-cavitating vortex.

the oscillating cylindrical bubble (2.14) shows that the period should increase with
increasing domain size by a factor of

√
ln(rD/rb). For the domain size chosen here,

2.3 <
√

ln(rD/rb) < 2.7, and 1.6 <TβΓO/[4π2r2
c

√
ln(rD/rb)] < 3.3. The scaling expressed

in (2.18) suggests that the bubble growth will be influenced by variations in the radial
pressure gradients near the bubble that would occur, say, for two vortices with
the same core cavitation number but different Reynolds number. However, these
differences in the pressure gradient did not lead to noticeable differences in the
bubble growth over the range of parameters examined here.

The growth of the cylindrical bubble modifies the vortical flow field and changes
the radial velocity profile. Figure 8(a) presents the circumferential velocity profile
during bubble growth for Γ0 = 0.1, rC = 1 mm and �T /τv = 0.5 for varying σC = −0.4
at time t/τv = 1, and figure 8(b) presents the velocity profiles for various t/τv at
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fixed σC . The circumferential velocity profiles are displaced by the growing bubble
and result in a lower peak circumferential velocity of the flow, and the reduction in
the peak circumferential velocity is an expected consequence of angular momentum
conservation. The circumferential velocity near the bubble interface remains low with
large modification of the vortical flow field and remains near zero when γ = 1.

The collapse of a cylindrical bubble in a vortex line was also examined. Figure 9
presents the collapse of cylindrical bubbles, which were initially steady, subjected to
the pressure profile shown in figure 3(b) and for various σC . Bubble oscillations are
observed during the collapse with a nearly constant frequency of oscillation. This
frequency is weakly related to the rate at which the increase in pressure is applied
�T /τv as shown in figure 9(a). Increasing the applied pressure increases the rate at
which the bubble collapses, as shown in figure 9(b). We can compare the collapse
time of the bubble to that of a spherical bubble in a quiescent liquid. In this case,
the collapse time scales as τCS ∼ rb/

√
ρ/�P . The ratio of this time scale to that of

the vortex τv is given by τCS/τv ∼ (rb/rC)/(π
√

2σC) and is between 0.1 and 0.2 for the
parameters considered here. Figure 9(b) shows that, after an initial sudden decline in
the bubble radius, the time to full collapse is two orders or magnitude larger than
that of the spherical bubble. As the cylindrical bubble collapses, the average driving
pressure difference is reduced, and hence a much longer time is taken before complete
collapse.

Both the equilibrium and dynamic simulations of the cylindrical bubbles suggest
that modification of the surrounding vortical flow by the expanding bubble strongly
influences the ultimate radius that the bubble will achieve. Also, the dynamic model
illustrates how these flow interactions can lead to radial bubble oscillations. Next, we
will examine the dynamics of more realistic bubbles that can grow and oscillate in
both the radial and axial directions of the vortex.

3. Three-dimensional calculation using DF UNCLE c©

3.1. Background

A three-dimensional unsteady Navier–Stokes solver has been developed by
Dynaflow, Inc. for the simulation of complex bubble dynamics (Hsiao & Chahine
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Sub grid Global grid

Hole

Overall grid

Figure 10. Two-dimensional illustration of a Chimera grid system and localization of the
hole and of the overlap points marked with a solid dot (Hsiao et al. 2004).

2001, 2004, 2008), and a summary of the method is provided here. The three-
dimensional incompressible Navier–Stokes flow solver, DF UNCLE c© is modified
from the unsteady Navier–Stokes equation solver (UNCLE) developed at Mississippi
State University (Arabshahi, Taylor & Whitfield 1995) to include bubble, cavity
and free-surface effects. The numerical scheme of DF UNCLE c© is a finite volume
formulation. To investigate the bubble dynamics a Chimera grid scheme moving
with the bubble was adopted with free-surface boundary conditions, as illustrated in
figure 10. The Navier–Stokes equations are solved for the global and subgrids, and
interpolation work is performed for overlapping these two grids. In order to consider
nuclei growth and capture by the vortex prior to the conditions where non-spherical
behaviour becomes predominant, a spherical bubble model is adopted, which uses
a modified Rayleigh–Plesset equation based on a bubble surface-averaged pressure
(SAP) for the pressure driving the bubble dynamics. This model was developed by
Hsiao & Chahine (2001) and used by Choi, Hsiao & Chahine (2004) and Choi &
Chahine (2007). Once bubble vortex interaction is significant and the bubble radius
starts increasing, the DF UNCLE c© non-spherical model with a subgrid is used to
solve the Navier–Stokes equations including full bubble flow field interaction. Balance
of the normal stress and tangential stress is enforced as boundary conditions on the
bubble interface, and the motion of the bubble interface is fully coupled with the
liquid flow field.

First, the growth and collapse of a cavitation nucleus placed on the axis of a
liquid vortex was examined. The non-cavitating vortical flow consisted only of a
circumferential velocity distribution (i.e. no axial or radial flows). An O–O type
three-dimensional, spherical grid domain (41 × 21 × 25) was generated as a spherical
subgrid for the bubble using 41 × 21 grid points on the bubble surface, and an H–H
type rectangular grid (61 × 31 × 31) was used for the flow field. There were 16 grid
points across the core of the vortex before the nucleus began to grow significantly. To
have finer grids near the bubble liquid interface, a stretched grid spacing scheme was
adopted. The rectangular domain had a size of 3 × rC by 10 × rC and the size of the
bubble grid domain, which stretched with the bubble size during the simulation, was
30 times the instantaneous effective bubble radius (Reff = (3Vb/(4π))1/3). The bubble
was re-gridded during the simulation to maintain the original grid stretching factors
and obtain good spatial resolution. Figure 11 shows the overlapped spherical grid and
rectangular grid domains in the three-dimensional field. Finally, we constrained the
solution to be axisymmetric. The pressure and tangential velocity of the undisturbed
vortex were prescribed at the axial boundaries of the domain, even though it is
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�T/τ
V

ReΓ �T/τ
V

ReΓ

2 × 105 4 × 105 2 × 105 4 × 105

Small 3 × σC 3 × σC Small 2 × σC 3 × Lb/Db 3 × Lb/Db

Middle 3 × σC 3 × σC Middle 2 × σC 3 × Lb/Db 3 × Lb/Db

Large 3 × σC 3 × σC Large 2 × σC 3 × Lb/Db 3 × Lb/Db

Table 2. The matrix of parameters used in the three-dimensional dynamic bubble simulations.
σC = �P ∞/(1/2ρu2

θ,max ) and has the values σC= −0.4, −0.6 and −0.8 for the growing bubbles,
and σC= 0.4 and 0.6 for the collapsing bubbles, �T. The maximum tangential velocity of the
vortex before growth of the cavitation bubble is uθ,max and occurs at the core radius, rC . τ v =
2πrC/uθ,max is the vortex time scale. For the collapse cases, the ratio of the mean length Lb

and diameter Db, before collapse is varied.
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Figure 11. Grid domain used in the axisymmetric simulations. A total of 41 × 21 × 21 grid
points are specified to generate the spherical subgrid for the bubble, with 41 × 21 grid points
used on the bubble surface. For the rectangular overall grid, a total of 61 × 31 × 31 grid points
are used.

possible to have velocity gradients at the boundary. To simulate both the growth
and collapse of bubbles, the static pressure at the radial extent of the domain was
prescribed and was varied with time as illustrated in figure 3. The time step for the
simulation was chosen to be in the range 0.001 <rC/uθ,M < 0.005.

The growth and collapse of the bubble was computed for various pressure
histories, growth and collapse times and bubble aspect ratios, detailed in table 2.
The Reynolds number (ReΓ = ΓO/ν) was also varied by doubling the vortex core
size while maintaining the same initial maximum tangential velocity. Collapse bubble
simulations were performed for bubbles with varying initial mean length to diameter
ratios Lb/Db. Fission of the bubbles was assumed to occur when the local radial
distance between two points of the bubble became smaller than the grid size at
the bubble interface. The results of the simulations were non-dimensionalized using
the vortex core radius as the length scale and the vortex time scale. In physical
coordinates, the simulated core radius was 4 and 8 mm, depending on the scale of
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t/τv = 0.25 t/τv = 0.50 t/τv = 0.75 t/τv = 1.00

t/τv = 0.25 t/τv = 0.38 t/τv = 0.50 t/τv = 0.75

(a)

(b)

t/τv = 0.06 t/τv = 0.19 t/τv= 0.30 t/τv = 0.50

(c)

Figure 12. Volume history of three-dimensional bubbles in a line vortex during bubble growth
for (a) ReΓ = 2 × 105 and σC = −0.4, for and �T/τv = 0.46 (b) �T/τv = 1.13. Also shown is
the volume history for (c) ReΓ =4 × 105 and, σC = −0.4, and �T/τv = 0.23.

the given vortex (ReΓ =2 × 105 and 4 × 105), and the maximum tangential velocity
was 5.7 m s−1. The non-dimensional time scale τv was 4.42 and 8.84 ms in this study.
Transition from the SAP model to the non-spherical model was imposed when rb,eq

exceeded 200 μm.

3.2. Vortex bubble growth from a spherical nucleus

The growth of bubbles in a vortex from an initially spherical nucleus into an elongated
bubble was examined. Figure 12 presents images of the growing bubble in the vortex
for fixed Reynolds number and applied tension, with two different rates of application
of the tension. Figure 13 presents the bubble radius and length as a function of time
for the different conditions. The radius and length of a cylinder with the same
volume of the elongated bubble are plotted. Unlike the cylindrical bubble growth
discussed above, in these numerical simulations the small spherical nucleus grows
simultaneously in the axial and radial directions until it becomes elongated. However,
there are some significant similarities. The radius that the bubble achieves increases
with increasing tension, and the radius oscillates with a period that is of the order
of the vortex time scale. However, the bubble cannot grow monotonically in the
axial direction. Instead, the radial extent of the bubble also oscillate until it, possibly,
achieves an equilibrium rate of axial growth. Figure 14 presents close-up views of
the flow field near the axial extent of the bubble in a plane containing the axis of
the bubble. A flow generated from the axial growth of the bubble moves around the
bubble tip and towards the middle of the elongated bubble, demonstrating how
the radial and axial bubble motions become coupled through local modification of
the bubble surrounding flow field and resulting in an abrupt change of the bubble
shape and the formation of a re-entrant jet. Recall that in these simulations, the
pressure inside the elongated bubble is essentially constant at the vapour pressure, so
there is no dynamics due to changes in the internal bubble pressure. (These effects can
also be simulated but were not considered here.) The radial motion of the bubbles can
include oscillation, growth, collapse and rebound phases, when the flow generated by
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Figure 13. Bubble length and radius normalized by the vortex core radius during bubble
growth at ReΓ = 2 × 105 or varying tensions and three rates of applied tension.

the bubble dynamics along the vortex axis couples with the radial flow. This coupling
is illustrated in figures 14 and 15.

As in the cylindrical bubble computations, the radius of the bubble approaches
an equilibrium value after the full extent of the tension has been applied, but the
radius continues to oscillate with a period that is of the order of the vortex time
scale, coupled with the vorticity time scale. Considering the wavelength of sound
waves within the bubble, the speed of sound in the gas within the bubble is of order
400 m s−1, and the bubble length is of the order of 0.001–0.010 m. This would make
the resonant frequency of the order of 40–400 kHz, which is much higher than the
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(a) (b)

(c) (d )

t/τv = 0.25 t/τv = 0.50

t/τv = 0.75 t/τv = 1.00

Figure 14. Flow fields near the bubble axial extent during growth with velocity vectors in a
plane parallel to and intersecting the vortex axis. Vortex axis is in the horizontal direction.
ReΓ = 2 × 105, σC = −0.4 and �T/τv = 0.46. The four images correspond to the four times
labelled in figure 13(a).

observed frequency of the oscillating bubbles. But, there may be circumstances where
the frequencies are more closely matched. The observed period of radial oscillations
of axisymmetric and cylindrical bubbles is plotted in figure 7. The oscillation period
of the axisymmetric bubble is approximately half that of the cylindrical bubble. While
the domain size is smaller compared to the cylindrical calculations, the period is larger.

The sensitivity of the bubble dynamics to changes in the Reynolds number is
illustrated in figure 12. A doubling of the Reynolds number produced significant
differences to the shape history and dynamics of the bubbles, and this is also illustrated
in figures 13 and 16, where the radius and length profiles for the growing bubbles
at two different Reynolds numbers are compared. At higher Reynolds number, the
overgrowth of the bubble is less than the case of lower Reynolds number, which is
similar to the effect of longer time of applied tension. Thus, differences in the history
of bubble growth are determined by differences in the spatial pressure gradient in the
radial direction and in the temporal pressure gradients, resulting from the combination
of both effects, which may not be scaled with Reynolds number. Note that a slower
application of the pressure tension reduced the amplitude of radial bubble oscillation,
as in the cylindrical bubble cases.
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Figure 15. Velocity and pressure fields near the tip of the growing bubble for ReΓ = 4 × 105,
σC = −0.4, �T/τv = 0.23, at time t/τv = 0.5. The top half of the image shows relative pressure
contours, and the bottom shows the local velocity in a plane parallel to and intersecting the
vortex axis. Vortex axis is in the horizontal direction.

Also in the cylindrical bubble simulations, the growing bubble significantly modifies
the circumferential velocity distribution around the bubble. Figure 17 presents the
history of the circumferential velocity profile in a plane perpendicular to the vortex
axis located at the centre of the elongating bubble for the cases shown in figure 12.
Recall that for the cylindrical bubbles, the radial velocity at the bubble surface varies
along its axial extent, and the data shown here are for particular planes intersecting
the bubble axis. As the bubble pushes out the flow field, the vortex core is also pushed
out with smaller maximum tangential velocity during bubble oscillation after tension
is applied.

In the three-dimensional axisymmetric calculations, the bubble grows in both the
radial and axial directions, and the bubble growth in the axial direction is not
necessarily monotonic. The average rate of axial bubble growth along the vortex axis
was computed, and this is compared to the experimental observations of Choi &
Ceccio (2007) in figure 18. The axial growth rate L̇b is normalized with the axial
tension using 2πrCL̇b/βΓO

√
σC . The average normalized growth rate is in the range

of 1.5 to 2.0 times larger than the experimentally observed growth rates. However,
it should be noted that the experimentally observed bubbles were not exposed to a
uniform pressure in the axial direction as they entered and exited the Venturi used
to create the pressure rise and drop, while the calculations were conducted with a
uniform pressure applied along the full axial extent of the domain boundary.

The elongated bubbles were allowed to grow to an aspect ratio of up to 10. Then,
the average radius of the bubble was computed. These data were compared to the
predicted envelope of possible equilibrium radii for very elongated bubbles, and
are presented in figure 2. The computed radii are within the predicted envelope of
the equilibrium radii, except for the case with the highest tension, when the bubble
was not in equilibrium. As was the case of the cylindrical bubble calculations, the
scaled radii are 2–3 times larger than the experimentally observed radii from Choi &
Ceccio (2007). This is likely due to several factors. First, the external pressure is
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Figure 16. Bubble length and radius normalized by the vortex core radius during bubble
growth at ReΓ = 4 × 105 or varying tensions and three rates of applied tension.

applied uniformly to the exterior of the computational domain for the axisymmetric
simulations. But, in the experiment, there were finite pressure gradients along the
axis of the vortex that led to significant pressure differences across the extent of
the bubble. Second, the bubbles were constrained here to be axisymmetric, unlike
the actual bubbles. Changes in the mean circumferential velocity near the bubble
interface can result from surface waves and non-symmetric volume oscillations
of the experimentally observed bubbles, and this in turn can change the mean
pressures the bubbles experience. Also, recall that the computed bubbles had a finite
circumferential velocity near their interface, which would lead to a larger bubble
radius.



274 J. Choi, C.-T. Hsiao, G. Chahine and S. Ceccio

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

0 0.5 1.0 1.5 2.0 2.5 3.0

r/rC,NC

0 0.5 1.0 1.5 2.0 2.5 3.0

r/rC,NC

u θ
/u

θ
,m

ax
,N

C

u θ
/u

θ
,m

ax
, 
N

C

t/τv= 0.25

t/τv= 0.50

t/τv= 0.75

t/τv= 1.00

0.2

0.4

0.6

0.8

1.0

1.2

0 0.5 1.0 1.5 2.0 2.5 3.0

r/rC,NC

0.2

0.4

0.6

0.8

1.0

1.2

t/τv= 0.25

t/τv= 0.38

t/τv= 0.50

t/τv= 0.75

t/τv= 0.06

t/τv= 0.19

t/τv= 0.30

t/τv= 0.50

Bubble radius

Bubble radius

(a) (b)

(c)

Bubble radius

1.0

Figure 17. History of the circumferential velocity profile in a plane perpendicular to the
vortex axis located at the centre of the elongating bubbles for the cases shown in figure
12. (a) σC = −0.4, �T/τV = 0.46, ReΓ = 2 × 105 (b) σC = −0.4, �T/τV =1.13, ReΓ = 4 × 105

(c) σC = −0.4, �T/τV = 0.23, ReΓ = 4 × 105.

3.3. Collapse of elongated vortex cavitation bubbles

A series of bubbles were allowed to grow to a particular ratio of length to diameter.
Then, an increase in the applied pressure (as shown in figure 3b) was imposed to
initiate bubble collapse. Figure 19 shows the bubble volume history for two Reynolds
numbers with Lb/Db = 2. Pressure was applied to impose σC= 0.3. The bubble radii
and length reduce, as expected. But, the bubbles also neck down and become pinched
at their ends. This pinching can lead to bubble splitting. Figure 20 shows the radius
and length history for the bubbles with aspect ratios ranging from 2 to 5 before
collapse. Note that the time of collapse is much closer to the vortex time scale for
these axisymmetric bubbles. Also, the splitting occurs after a collapse time that is
often of the order of τv/2, or half the period of oscillation.

Figure 21 shows the history of bubble collapse with flow field around bubble,
leading to bubble splitting. Again, the radial and axial motions of the bubble are
coupled through the flow field, especially at the ends of the bubble split. This is
illustrated in figure 22 that presents a close-up of the velocity field for t/τ v = 0.5
along with the local static pressure, leading to splitting at both ends of the bubble.
There are high-pressure regions at the bubble neck that can lead to splitting and the
high pressures at the axial extents of the bubble can produce re-entrant jets (Choi &
Chahine 2004, 2007). Figure 23 presents some close-up images of collapsing vortex
cavitation bubbles as the flow pinches off the end of the elongated bubbles producing
sub-bubbles. These smaller sub-bubbles can produce a noise pulse upon collapse in a
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Figure 18. The growth rate of the bubble shape ratio in the axial direction as a function of
the cavitation number at the vortex axis for varying rates of the applied tension and Reynolds
number. Filled symbols (ReΓ = 2 × 105) and open symbols (ReΓ = 4 × 105). The shaded area
is the experimental data for all conditions in Choi & Ceccio (2007).
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Figure 19. The volume history of elongated bubbles during collapse. The initial aspect ratio
of the bubbles was Lb/Db = 2, and a pressure was applied to impose σC = 0.3. (a) ReΓ = 2 × 105

and (b) ReΓ = 4 × 105.

manner similar to smaller near- spherical bubbles, as discussed by Oweis et al. (2004).
The length scale that is the most important for the collapse of the sub-bubbles is
their radius, which is similar to the radius of the elongated bubble.

4. Discussion and conclusions
The growth, splitting and collapse of two- and three-dimensional vortex cavitation

bubbles were examined. The traditional scaling variables of vortex cavitation (i.e.
ΓO , rC , σC , rb) are important parameters that scale the basic features of the bubble
inception, growth and collapse. However, the diameter of the elongated bubbles is
not uniquely determined by the non-cavitating vortex properties and is influenced
by the detailed conditions and processes at inception. Large nuclei (with near-zero
critical tension), experiencing slowly applied tensions, will grow in a quasi-steady
fashion, slowly displacing the fluid around the bubble. Small nuclei requiring a large
tension to incept can grow explosively when the critical tension is reached. These
bubbles rapidly displace the surrounding fluid, and the bubble radial dimension will
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Figure 20. Bubble length and radius normalized by the vortex core radius during bubble
collapse with various aspect ratios and (a) ReΓ = 2 × 105 and σC = 0.3 for �T/τv = 1.13
and (b) ReΓ =4 × 105 and σC = 0.3 for �T/τv = 0.46.

overshoot the equilibrium radius. Once the radial growth of the bubble is arrested by
the increasing radial pressure around the bubble, the bubble radius may diminish and
ultimately oscillate around an equilibrium value. Or, the bubble radius may shrink so
rapidly that the bubble can collapse or fission can occur. Thus, the influence of the
nuclei distribution and the process leading to the dynamic reduction (or rise) of the
core pressure are also important.

The two-dimensional analysis illustrates the basic mechanism responsible for the
radial growth of the bubble to an equilibrium value through the redistribution of
the flow around the bubble. The radial growth pushes fluid away from the rotational
axis of the bubble, reducing its tangential velocity and thus increasing the pressure
at the bubble interface. If the radial growth of the bubble is slow, the bubble can
reach a new equilibrium radius without significant overshoot. However, if the growth
of the bubble is rapid (possibly due to the inception of a strong nucleus under high
tension), the bubble radius will strongly overshoot the equilibrium value. This will
lead to strong radial oscillations of the bubble. The dynamics of these radial bubble
oscillations are scaled with the non-cavitating vortex time scale τ v .

However, the two-dimensional bubble calculations do not capture other important
features of the bubble dynamics such as the presence of circumferential perturbations
on the bubble interface. Moreover, actual bubbles are three-dimensional and grow
and collapse in the axial as well as the radial direction. The three-dimensional
calculations reveal important interactions between the radial and axial motions of the
growing and collapsing cavitation bubbles. The growth and collapse of these bubbles
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(a)
t/τv = 0.08

(b)
t/τv = 0.16

(c)
t/τv = 0.32

(d )
t/τv = 0.5

Figure 21. Flow fields near the bubble axial extent during collapse with velocity vectors in
a plane parallel to and intersecting the vortex axis. Vortex axis is in the horizontal direction.
ReΓ = 4 × 105, Lb/Db = 2, σC = 0.3. The four images correspond to the four times labelled in
figure 20(b).

Higher static pressure region

Figure 22. Velocity and pressure fields near the tip of the collapsing bubble illustrating
the process responsible for splitting. Vortex axis is in the horizontal direction; t/τv = 0.5,
ReΓ = 4 × 105, Lb/Db = 2 and σC = 0.3
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Figure 23. Images of collapsing vortex cavitation bubbles that illustrate the ‘pinch-off’ of
sub-bubbles. Note that after a single bubble forms on one end, the pinching process continues
and other bubbles may be formed.

exhibit complex volume time histories, and radial flows induced by the expanding of
collapsing bubbles could lead to changes in pressures and flow at the axial extent
of the bubbles. Bubbles would undergo fission upon collapse through the production
of sub-bubbles at the extreme ends of the original elongated bubble. And, since
the radius of the elongated bubble is much smaller than its length, the bubble can
collapse in the radial direction much sooner, leading to splitting (also see Choi et al.
2004, 2007 for a further discussion of vortex bubble splitting). The computed bubble
radii and axial growth rates are similar to those observed by Choi & Ceccio (2007),
and are typically within a factor of 2. However, both the experimental observations
and the results presented here indicate that the growth, dynamics and collapse of
vortex cavitation bubbles are quite sensitive to the underlying flow parameters, such
as the Reynolds number and the rate and spatial distribution of the applied tension
or collapse pressure. This makes the prediction of vortex cavitation dynamics both a
rich and challenging problem.

This work was supported by the Office of Naval Research under grant number
N00014-03-1-0430, Dr K.-Han Kim, Program Manager.
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